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Two consistent projection methods of second-order temporal and spatial accuracy have
been developed on a rectangular collocated mesh for variable density Navier–Stokes equa-
tions with a continuous surface force. Instead of the original projection methods (denoted
as algorithms I and II in this paper), in which the updated cell center velocity from the
intermediate velocity and the pressure gradient is not guaranteed solenoidal, the consis-
tent projection methods (denoted as algorithms III and IV) obtain the cell center velocity
based on an interpolation from a conservative fluxes with velocity unit on surrounding cell
faces. Dependent on treatment of the continuous surface force, the pressure gradient in
algorithm III or the sum of the pressure gradient and the surface force in algorithm IV at
a cell center is then conducted from the difference between the updated velocity and
the intermediate velocity in a consistent projection method. A non-viscous 3D static drop
with serials of density ratios is numerically simulated. Using the consistent projection
methods, the spurious currents can be greatly reduced and the pressure jump across the
interface can be accurately captured without oscillations. The developed consistent projec-
tion method are also applied for simulation of interface evolution of an initial ellipse driven
by the surface tension and of an initial sphere bubble driven by the buoyancy with good
accuracy and good resolution.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Accurate modeling of multi-fluid flows with surface tension, which are frequently encountered in engineering applica-
tion, is a challenging work because of the interface deformation, the discontinuity in material properties across the interface
and the interfacial boundary conditions due to surface forces. Methods for interface advection in multi-fluid flows include
but not limited to the volume of fluid (VOF) [9,21,41], level set [22,31], immersed boundary method [24], front tracking
[36,37], CIP [33,40], phase field [10]. The interfacial methods using fixed Eulerian grids solve incompressible variable density
Navier–Stokes equation with surface tension as source terms. Special treatments are needed to deal with the balance be-
tween the pressure gradient and the surface tension. Local imbalances between the pressure gradient and the surface tension
leads to spurious (parasitic) currents [12], which do not disappear with mesh refinement. When the surface tension is dom-
inant, these spurious currents may destroy the interface and cause disruptive instability. For simulations of multi-fluid flows
using VOF method, this imbalance may be induced either by poor discretization of the pressure gradient and the surface
. All rights reserved.
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tension or by inaccurate calculation of the curvature rate [6]. An accurate calculation of curvature rate can be yielded using
coupled level set and VOF method [32], least-square method for the reconstruction of surface tension [27], an estimator
function tuned with a least-square-fit against the reference data [14], height function technique [5,13,28], convolution tech-
nique, which is not the research issue of this paper. The modeling of the pressure gradient and the surface tension will be
discussed in this paper.

An accurate implementation of surface tension force is a key to reduce the spurious currents. Popinet and Zaleski [25]
reduced the spurious currents considerably by improving the pressure gradient calculation using a pressure gradient correc-
tion procedure in their front-tracking method. In the PROST algorithm, Renardy and Renardy [27] noted that a balance be-
tween the two nonzero terms of the surface tension and the pressure gradient terms must be maintained numerically at
equilibrium. The pressure is divided into two parts p1 and p2, in which p1 and p2 are chosen to ensure S �rp1 (S denotes
surface tension) and the discrete velocity divergence-free, respectively. This idea of the PROST was employed by Tong
and Wang [34] for their simulation of capillarity-dominant free-surface flow with PBM (pressure boundary method). Shirani
et al. [30] developed a cheap method for the calculation of the pressure on the interface location (PCIL). The method is di-
rectly derived by applying the momentum balance on each interface cell. Torres and Brackbill [35] employed a curl projec-
tion method for incompressible flows to reduce the spurious currents with an unconnected front-tracking method. Jamet
et al. [11] used a second-gradient method to reduce the truncation error in the computation of the energy exchanges be-
tween the surface and the kinetic energies. By ensuring energy conservation, the parasitic currents were reduced drastically.
Shin et al. [29] present a simple and effective improvement in suppressing spurious currents to a minimal level by a hybrid
formulation for the calculation of the surface tension force in the context of a front-tracking interface method. To maintain
the balance between the pressure gradient and the surface tension, a balanced-force projection method was designed by
Francois et al. [6] on a collocated mesh, in which both the surface tension and the pressure gradient were directly estimated
at cell faces and the values at cell centers are interpolated from the values on surrounding cell faces. A simple interpolation
formula has been given in the paper. The balanced-force algorithm [6] calculates the pressure term and the surface tension
together at every step of a projection method using the same technique to discretize the gradients of the pressure and the
volume fraction. This algorithm has been proven very effective in the balance of the pressure gradient and the surface force
on a collocated mesh.

For incompressible flows, r � u ¼ 0 is an important constraint condition to construct a conservative scheme. On a collo-
cated mesh, the divergence of velocity at a cell center calculated from the fluxes on the surrounding cell faces are guaranteed
divergence-free after a convergent solution of the pressure Poisson equation is used to project the intermediate velocity on a
divergence-free vector space. However, the calculated cell center velocity based on the intermediate velocity and the pres-
sure gradient is not guaranteed solenoidal. Motivated by the successful application of a consistent and conservative scheme
for the simulation of liquid metal flows under a strong magnetic field [18,19], in which the conservative current fluxes on
surrounding cell faces are interpolated to obtain the current density at a cell center, a consistent projection method on a col-
located mesh is designed to enforce the solenoidal cell center velocity field. The velocity at a cell center will be yielded
through interpolation of conservative fluxes on the surrounding cell faces. Depending on treatment of the surface tension,
two consistent projection methods calculate the pressure gradient or the sum of the pressure gradient and the surface ten-
sion at a cell center from the difference between the solenoidal cell center velocity and the non-solenoidal intermediate
velocity, respectively. In the consistent projection methods, the pressure are divided into two parts. The first part is chosen
to obtain a second-order conservative velocity fluxes on cell faces and the second-part is chosen to yield second-order sole-
noidal discrete cell center velocities. To validate the consistent projection methods, a three-dimensional non-viscous static
drop with surface tension is simulated. The interface is represented by the zero level set function. Detailed comparisons be-
tween the original projection methods and the corresponding consistent projection methods are conducted. The numerical
results will show that the consistent projection methods predict the velocity field with dramatically reduced spurious cur-
rents and the accurate pressure jump without oscillations. The consistent projection methods are also successfully applied
for simulation of interface evolutions of an initial ellipse driven by surface tension and of an initial sphere bubble driven by
buoyancy.

2. Numerical methods for variable density incompressible Navier–Stokes equations with surface tension

2.1. Governing equations

In the level set method, a single set of mass and momentum conservation equations is solved on a fixed Eulerian grid and
the level set function / with / ¼ 0 represented as interface is evolved with an advection equation. The flow is assumed to be
incompressible. The governing equations are the momentum conservative equation:
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and the advection equation of the level set function:
@/
@t
þ uj

@/
@xj
¼ 0 ð3Þ
where ui is the velocity at the xi direction of a Cartesian coordinate, p the total pressure, Si the body force at the xi direction,
which may include gravitational acceleration or surface tension. q and l are the fluid density and viscosity, respectively,
which are defined using the Heaviside function hð/Þ as:
q ¼ hð/Þq1 þ ð1� hð/ÞÞq2 ð4Þ

l ¼ hð/Þl1 þ ð1� hð/ÞÞl2 ð5Þ
Here the subscripts 1 and 2 denote fluid 1 and fluid 2, respectively. Using the CSF (continuous surface force) model [2] based
on the level set function, the surface tension at xi direction can be expressed as:
Si ¼ rjð/Þdð/Þ @/
@xi

ð6Þ
where r is the surface tension coefficient, j is the interfacial curvature, d is the Dirac function.

2.2. Review of algorithms for incompressible Navier–Stokes equations

A key issue in the design of numerical methods for incompressible flows is the development of an appropriate discrete
form of the incompressibility constraint of Eq. (2). Famous primitive variable numerical methods include the explicit
MAC method [7], implicit and/or semi-implicit projection methods [4] and the SIMPLE method [23]. They all have been
extensively used and have served well. Implicit or semi-implicit methods are attractive as a means of avoiding restrictions
on the explicit time step. Both the projection methods and the SIMPLE type methods have been successfully applied to un-
steady flows and steady flows [1,3,23,26,38,39]. The standard SIMPLE method has a second-order temporal accuracy for un-
steady flows [16] and a bridge between the projection method and the SIMPLE method is built up [17], where general three-
step and four-step projection methods of second-order temporal accuracy are developed for incompressible flows without
body force included. The general second-order projection methods are extended to incompressible Navier–Stokes equation
of MHD (magnetohydrodynamics) with the Lorentz force included as a body force [18,19], in which a consistent and conser-
vative scheme is designed to obtain a solenoidal current density at a cell center from an interpolation of conservative current
density fluxes on the surrounding cell faces. Based on a four-step projection method [3], which is one case of the general
four-step projection method in [17] with h ¼ 1, and on a momentum interpolation [42] to overcome the pressure checkboard
phenomena on a collocated mesh, algorithms for variable density incompressible Navier–Stokes equations with the surface
tension included can be reviewed here.

A simple nomenclature is necessary for detailed discussion of the algorithms. As illustrated in Fig. 1, the subscripts c and f
denote the cell center and the cell faces of the control volume c, respectively. fi denotes cell faces at xi direction of the control
volume c with fþi the cell face at positive xi direction and f�i the cell face at negative xi direction. The center of the neighbor
control volumes of fi is denoted as ci with cþi the neighbor of fþi and c�i the neighbor of f�i . The coordinates of the cell center
and its neighbor centers are ðxjÞc; ðxjÞcþ

i
and ðxjÞc�

i
, respectively. The coordinates of the cell faces are ðxjÞfþ

i
; ðxjÞf�

i
, respectively.

The superscript n denotes the time level. The subscripts i, j represent 1, 2, 3, which denote the three Cartesian coordinate
directions, respectively. In this paper, the subscripts fi and ci do not do Einstein sum with the variables in the equations.

Depending on treatments of the source term of the surface tension in the Navier–Stokes equations, two algorithms on a
collocated mesh are listed here from time level n to time level n + 1 with titles of algorithms I and II, respectively. In the
2c

2c

c 1c1c

2f

2f

1f1f

Fig. 1. Illustration of computation cell.



M.-J. Ni / Journal of Computational Physics 228 (2009) 6938–6956 6941
algorithm I, the source will be calculated only in the first predictor step. In the algorithm II, the source will be calculated
together with the pressure gradient in every step of a projection method.

2.2.1. Algorithms I – with source term only needed in the predictor step
In this algorithm, the surface tension is only calculated in the first predictor step. With the level set function /n

c known,
the density qn

c and viscosity ln
c at cell centers can be yielded from Eqs. (4) and (5). The pressure gradient 1

q
@p
@xi

� �n

c
and the

surface tension 1
q Si
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c
at time level it n have been calculated based on known pn

c and /n
c . The detailed computational proce-

dures at the Cartesian coordinate can be given here as:

(1) By solving the interface evolving Eq. (3), the level set function /nþ1
c can be yielded based on /n

c and ðuiÞnc . And the den-
sity qnþ1

c and viscosity lnþ1
c at the time level nþ 1 can be obtained from Eqs. (4) and (5).

(2) The first predictor velocity ðuiÞ�c at cell center can be obtained based on the velocity ðuiÞnc , the pressure gradient 1
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To ensure second-order temporal accuracy, the diffusion term can be updated using the Crank–Nicholson scheme for
the sake of stability:
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with sij ¼ @
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, and the convective term can be updated using the explicit Runge–Kutta technique or the

following Adams–Bashforth technique for the sake of simplicity:
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(3) The second predictor velocity ðuiÞ��c at cell center can be obtained based on the first predictor velocity ðuiÞ�c and the
pressure gradient 1

q
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c
from:
ðuiÞ��c ¼ ðuiÞ�c þ Dt
1
q
@p
@xi

� �n

c
ð10Þ
The second predictor velocity will be interpolated to obtain the intermediate velocity flux ðuiÞ��fi
on the corresponding

cell face fi, and an interpolation formula will be given later.
(4) The pressure pnþ1

c at time level nþ 1 can be acquired by solving the pressure Poisson equation based on the second
predictor velocity at cell faces and material properties at time level n + 1:
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The half-discretization formula of the Poisson equation can be given as:
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The pressure Poisson equation is solved using multigrid technique and ADI technique with underrelaxation method to
improve the numerical stability and convergence. A stability analysis of discretized convection–diffusion equation has
been conducted in [20].

(5) The normal velocity at the cell face fi can be updated to time level n + 1 as:
ðuiÞnþ1
fi
¼ ðuiÞ��fi

� Dt
1
q
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(6) The velocity vector at a cell center can be updated by:
ðuiÞnþ1
c ¼ ðuiÞ��c � Dt

1
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c

ð14Þ
This is the computational procedure from time level n to time level n + 1 for the algorithm I. Set n + 1 to n, and go back to
the step (2) for the next time level.
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As it has been explained, the subscript fi denote cell faces at xi direction of a control volume with fþi and f�i the cell faces at
positive and negative xi directions respectively. The Eq. (13) can be written as:
ðuiÞnþ1
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where the following interpolation technique is employed to get the intermediate velocity fluxes on the corresponding cell
faces:
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ð16Þ
2.2.2. Algorithm II – with source term needed in every step
In this algorithm, the surface tension is calculated in every step together with the pressure gradient. With the density qn

c

and viscosity ln
c known at cell center, the pressure gradient and surface tension at the time level n calculated at cell center,

the detailed computational procedures at the Cartesian coordinate can be given here as:

(1) The density qnþ1
c and viscosity lnþ1

c at cell center can be obtained using Eqs. (4) and (5) from /nþ1
c , which is acquired by

solving the advection Eq. (3) of the level set function based on /n
c and ðuiÞnc . At the new time level, the surface tension
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on a cell face can be calculated based on /nþ1
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c , respectively, using tech-

niques listed in Section 2.3.
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Again, the convective term can be updated using a second-order explicit technique for simplicity and the diffusion
term can be updated using the semi-implicit Crank–Nicholson technique for stability.

(3) The second predictor velocity at cell center can be obtained based on the first predictor velocity ðuiÞ�c and the pressure

gradient 1
q
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@xi
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c
and the surface tension 1
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The second predictor velocity will be interpolated to obtain the intermediate velocity ðuiÞ��fi on the corresponding cell
faces fi by using the interpolation of Eq. (16).

(4) The pressure pnþ1
c at time level n + 1 can be acquired by solving the pressure Poisson equation based on the second

predictor velocity and the calculated n + 1 time level’s surface tension on cell faces and material properties at time
level n + 1:
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(5) The normal velocity at the cell face fi can then be updated to time level n + 1 from the calculated pnþ1
c as:
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fi
¼ ðuiÞ��fi

� Dt
1
q
@p
@xi

� �nþ1

fi

þ Dt
1
q

Si

� �nþ1

fi

ð20Þ
(6) The velocity vector at a cell center can be updated to time level n + 1 as:
ðuiÞnþ1
c ¼ ðuiÞ��c � Dt
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Algorithm I has been broadly applied for the simulation of incompressible Navier–Stokes equations with a source term
included, such as for MHD in [18,19] and for multi-fludi flows in [12,26,31]. For multi-fluid flows, algorithm II is firstly devel-
oped by Francois et al. [6] to design a balanced-force method with the surface tension and the pressure gradient calculated
together at the same cell position using the same technique for discretization of the pressure gradient and the gradient of
volume fraction, which has been extended to an unstructured mesh [8]. In most of literatures, a three-step projection meth-
od is used, such as the algorithm II developed in [6]. Here, a four-step projection method is used to illustrate the two algo-
rithms for variable density Navier–Stokes equations with a source term included. Ni and Abdou [17] has proven the
equivalence of the three-step and the four-step projection methods for incompressible flows.
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2.3. Discretization of pressure gradient and surface tension

2.3.1. Pressure gradient and surface tension at cell face
On a collocated mesh, the pressure gradient @p

@xi
at the corresponding cell face f�i can be discretized to overcome the pres-

sure checkboard phenomena by:
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And the pressure gradient with density included of 1
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This is the only technique used in this paper to calculate the normal pressure gradient at a cell face.
Also the surface tension Si at the corresponding cell face fi is calculated using:
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where the normal gradient of the level set function is conducted using:
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Again, the normal surface tension with density included can be discretized by:
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This is the only technique used in this paper to estimate the surface tension at a cell face.
The density at a cell face is needed in the discretization of the pressure Poisson equation and in the calculation of the

pressure gradient and the surface tension with density included, which can be interpolated from the densities at the two
neighbor cell centers of the cell face. A simple linear average and a reciprocal average are employed and evaluated in the
paper, respectively, as:
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2.3.2. Pressure gradient and surface tension at cell center
The pressure gradient and the surface force at cell center are required in the predictor and updated steps. The following

two techniques will be employed for the evaluation of the pressure gradient and the surface tension at cell centers.

(1) Technique IThe pressure gradient at cell center is directly discretized using a second-order center-difference scheme
as:
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and the surface tension is calculated using the following equation:
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(2) Technique IIWith the pressure gradient at cell face calculated using (23) and the surface tension at cell face calculated
using Eq. (26), the pressure gradient and the surface tension at a cell center can be interpolated as:
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2.4. Development of consistent projection methods

For the algorithms I and II, the updated velocity at a cell center based on the non-solenoidal intermediate velocity and
the pressure gradient (sum of the pressure gradient and the surface tension for algorithm II) is not divergence-free. From
our numerical practice, which will be illustrated in Section 3, these two algorithms will produce big spurious currents
and pressure oscillations at a high density ratio. Motivated by our successful application of a consistent and conservative
scheme for calculation of current density at a cell center from a conservative interpolation of current fluxes on the sur-
rounding cell faces, two consistent projection methods of second-order temporal and spatial accuracy will be developed
here. In the consistent projection methods, the velocity at a cell center is not directly updated from the intermediate
velocity and the pressure gradient at a cell center, but interpolated from conservative fluxes on the surrounding cell
faces.

2.4.1. Algorithm III – a consistent projection methods based on Algorithm I
Without loss of generality, the algorithm I is taken as an example to develop a consistent projection method. In the algo-

rithm I, the divergence of velocity at a cell center based on the fluxes updated by Eq. (13) is free. However, the velocity vector
at a cell center updated by Eq. (14) is not guaranteed solenoidal. The vector at a cell center can be obtained by a simple cen-
tral interpolation from its corresponding fluxes on the surrounding cell faces of the control volume, which conserves the
charge in the simulation of MHD [18]. Instead of Eq. (14), a simple central interpolation can be employed here to obtain
the velocity vector at a cell center as:
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i
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Comparing with the update of velocity vector using Eq. (14) in algorithm I, this interpolation can guarantee a solenoidal cell
center velocity vector. However, this interpolation introduce a second-order dissipation. With ðuiÞnþ1
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Eqs. (13) and ðuiÞ��fi

interpolated by Eq. (16) and (33) can be reformulated as:
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Suppose the pressure gradient at a cell center is acquired using the technique II in Section 2.3, the following formula can be
deduced:
ðuiÞnþ1
c ¼ ðuiÞ��c � Dt

1
q
@p
@xi

� �nþ1

c
þ 1

4
ðuiÞ��cþ
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� �
¼ ððuiÞnþ1

c ÞAI þ 1
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@2u��i
@x2

 !
c

ðMxÞ2 ð35Þ
where ððuiÞnþ1
c ÞAI represents the velocity vector at a cell center obtained by Eq. (14) from algorithm I. The velocity vector from

a simple interpolation of Eq. (33) is a second-order spatially accurate approximation of ððuiÞnþ1
c ÞAI , but it is equivalent to an

second-order dissipation term added in the Navier–Stokes equation. In algorithm III, to eliminate this effect, a new flux is
constructed based on the second predictor velocity as:
ðgiÞ
��
fþ
i
¼ �1

8
@2u��i
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c
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 !
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A divergence at a cell center based on this new flux is apparently not free. A gradient of a scalar p2 is introduced in the algo-
rithm III to ensure the updated velocity fluxes conservative. Algorithm III is a consistent projection method based on the
algorithm I, in which the surface tension is only calculated in the first predictor step. With the level set function /n

c known,
the density qn

c and viscosity ln
c at cell centers can be yielded from Eqs. (4) and (5). The pressure gradient 1

q
@p
@xi

� �n

c
and the

surface tension 1
q Si

� �n

c
at time level n have been calculated. The detailed computational procedures of the algorithm III

can be given here as:

(1) By solving the interface evolving Eq. (3), the level set function /nþ1
c can be yielded based on /n

c and ðuiÞnc . And the den-
sity qnþ1

c and viscosity lnþ1
c at the time level n + 1 can be obtained from Eqs. (4) and (5).

(2) The first predictor velocity ðuiÞ�c at cell center can be obtained based on the velocity ðuiÞnc , the pressure gradient 1
q

@p
@xi

� �n

c

and the surface tension 1
q Si

� �n

c
at time level n from Eq. (7).

(3) The second predictor velocity at cell center can be obtained based on the first predictor velocity ðuiÞ�c and the pressure
gradient 1

q
@p
@xi

� �n

c
from Eq. (10). The intermediate velocity flux ðuiÞ��fi on the cell face fi is interpolated from its corre-

sponding velocity at neighbor centers by Eq. (16).
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(4) The pressure ðp1Þ
nþ1
c at time level n + 1 can be acquired by solving the following Poisson equation:
@

@xi

1
q
@p1

@xi

� �nþ1

fi

 !
c

¼ 1
Dt

@ðuiÞ��fi

@xi

 !
c

ð37Þ
(5) The normal velocity at cell face fi can be updated to time level n + 1 as:
ðuiÞnþ1
fi
¼ ðuiÞ��fi

� Dt
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ð38Þ
(6) A new flux of ðgiÞ
��
fi

is calculated from Eq. (36) to remove the numerical dissipation induced by a simple central inter-
polation from the velocity fluxes. A scalar p2 is introduced to ensure the divergence from updated flux of ðgiÞ

nþ1
fi

free.
The scalar p2 is obtained by solving the following Poisson equation:
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(7) The gradient of scalar p2 is used to update the flux of ðgiÞ
��
fi

, we then have:
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A divergence at a cell center based on the updated fluxes of ðgiÞ
nþ1
fþ
i

on the surrounding faces is free.
(8) In this algorithm, the velocity vector at a cell center is not directly updated from Eq. (14). The velocity flux ðuiÞnþ1

f�
i

and
the updated new flux ðgiÞ

nþ1
f�
i

are then used to obtain the velocity vector at a cell center by the following interpolation:
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This interpolation reduces the numerical dissipation due to a simple interpolation of Eq. (33) from the velocity fluxes
on cell faces. This interpolation can guarantee the velocity vector solenoidal comparing with the algorithm I.

(9) Instead of the discretization of the pressure gradient using the technique I and/or the technique II in Section 2.3, the
pressure gradient at a cell center can be calculated through the following equation:
1
q
@p
@xi

� �nþ1

c

¼ 1
Dt
ðuiÞ��c � ðuiÞnþ1

c

� �
ð42Þ
which is called as the technique III of the algorithm III for the pressure gradient in this paper. In algorithm III, the sur-
face tension is calculated from the technique II in Section 2.3.

This is the computational procedure from time level n to time level n + 1 for the algorithm III of a consistent projection
method. Set n + 1 to n, and go back to the step (1) for the next time level.

Algorithm III divides the pressure into two parts p1 and p2. The gradient of p1 will ensure the divergence at a cell center
based on the velocity fluxes ðuiÞnþ1

fi
on the surrounding cell faces free. The gradient of p2 will ensure divergence from the new

fluxes of ðgiÞ
nþ1
fi

free, which is used to remove the numerical dissipation introduce by a simple central interpolation from the
velocity fluxes. The velocity vector at a cell center is then interpolated from the sum of fluxes of ðuiÞnþ1

fi
þ ðgiÞ

nþ1
fi

, which is
solenoidal comparing with the original projection method of algorithm I. The pressure gradient at a cell center is calculated
from the difference between the updated velocity vector and the second predictor velocity vector, which is called technique
III of the algorithm III in this paper.

2.4.2. Algorithm IV – A consistent projection methods based on Algorithm II
Based on algorithm II, a simple central interpolation of Eq. (33) can be employed to obtain the velocity vector at a cell

center, which will introduce a numerical dissipation as:
ðuiÞnþ1
c ¼ ððuiÞnþ1

c ÞAII þ 1
4

@2u��

@x2

 !
c

ðMxÞ2 ð43Þ
where ððuiÞnþ1
c ÞAII represents the cell center velocity vector calculated from the algorithm II. To remove the effect of the

numerical dissipation, a consistent projection method of algorithm IV can be developed by introducing a new flux based
on the algorithm II. In this algorithm, the source term is calculated in every step together with the pressure gradient. With
the density qn

c and viscosity ln
c at cell center known, the sum of the pressure gradient and the surface tension at cell center of

1
q
@p
@xi

� �n

c
� 1

q Si

� �n

c
calculated at the time level n, the detailed computational procedures at the Cartesian coordinate can be gi-

ven here as:
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(1) The density qnþ1
c and viscosity lnþ1

c at cell center can be obtained using Eqs. (4) and (5) from /nþ1
c , which is acquired by

solving the advection Eq. (3) of the level set function based on /n
c and ðuiÞnc . At the new time level, the surface tension

1
q Si

� �nþ1

fi

on a cell face can be calculated using techniques listed in Section 2.3. The surface tension 1
q Si

� �nþ1

c
at a cell

center is not calculated separately.
(2) The first predictor velocity ðuiÞ�c at cell center can be obtained based on the velocity ðuiÞnc , the sum of the pressure gra-

dient and the surface tension 1
q
@p
@xi

� �n

c
� 1

q Si

� �n

c
from Eq. (17).

(3) The second predictor velocity at cell center can be obtained based on the first predictor velocity ðuiÞ�c and the sum of

the pressure gradient and the surface tension 1
q

@p
@xi

� �n

c
� 1

q Si

� �n

c
from Eq. (18). And the second predictor velocity will be

interpolated to obtain the intermediate normal velocity ðuiÞ��fi on the cell faces fi by using the interpolation of Eq. (16).
(4) The pressure ðp1Þ

nþ1
c at time level n + 1 can be acquired by solving the pressure Poisson equation based on the second

predictor velocity and the calculated surface tension on cell faces and material properties at time level n + 1:
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(5) The normal velocity at the cell face fi can then be updated to time level n + 1 from the calculated ðp1Þ
nþ1
c as:
ðuiÞnþ1
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(6) A new flux of ðgiÞ
��
fi

is calculated from Eq. (36) to remove the numerical dissipation induced by a simple central inter-
polation from the velocity fluxes. A scalar of p2 is introduced to ensure the divergence from updated flux of ðgiÞ

nþ1
fi

free.
The scalar p2 is obtained by solving the following Poisson equation:
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(7) The gradient of scalar p2 is used to update the flux of ðgiÞ
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fi

, we then have:
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A divergence at a cell center based on the updated fluxes of ðgiÞ
nþ1
fþ
i

on the surrounding faces is free.
(8) In this algorithm, the velocity vector at a cell center is not directly updated from Eq. (21). The velocity flux ðuiÞnþ1

f�
i

and
the updated new flux ðgiÞ

nþ1
f�
i

are then used to obtain the velocity vector at a cell center by the following interpolation:
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This interpolation removes the numerical dissipation in Eq. (43) due to a simple interpolation of Eq. (33) from the
velocity fluxes on cell faces. This interpolation can guarantee the velocity vector solenoidal comparing with the algo-
rithm I.

(9) Instead of the discretization of the pressure gradient and the surface tension using the technique I and/or the tech-
nique II in Section 2.3, the sum of the pressure gradient and the surface tension at a cell center can be calculated
through the following equation:
1
q
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c

� 1
q
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c

¼ 1
Dt
ðuiÞ��c � ðuiÞnþ1

c

� �
ð49Þ
which is called as the technique III of the algorithm IV for the calculation of the sum of the pressure gradient and the surface
tension.

This is the computational procedure from time level n to time level n + 1 for the consistent projection method of algo-
rithm IV. Set n + 1 to n, and go back to the step (1) for the next time level. Algorithm IV divides the pressure into two parts
p1 and p2. The gradient of p1 will ensure the divergence at a cell center based on the velocity fluxes ðuiÞnþ1

fi
on the surrounding

cell faces free. The gradient of p2 will ensure divergence from the new fluxes of ðgiÞ
nþ1
fi

free, which is used to remove the
numerical dissipation introduce by a simple central interpolation from the velocity fluxes. The cell center velocity vector
is then calculated through an interpolation of the sum of fluxes ðuiÞnþ1

fi
þ ðgiÞ

nþ1
fi

. The sum of the pressure gradient and the
surface tension at a cell center is calculated from the difference between the updated velocity vector and the second predic-
tor velocity vector.

To remove the dissipation introduced by a simple interpolation of Eq. (33), a new flux of Eq. (36) is constructed in algo-
rithms III and IV. Here, we introduce another flux to remove the numerical dissipation as:
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which is called as reconstruction of the new flux based on density interpolation in comparison with the reconstruction based
on a simple interpolation of Eq. (36).

3. Validation of the consistent projection method

3.1. Spherical droplet without gravity

The algorithms have been tested on a temporal evolution of a 3D droplet. A static spherical droplet with a radius R ¼ 0:5
in the absence of gravity is positioned at the center of a domain of 4R� 4R� 4R cube. The center of the sphere is coordinated
as (0,0,0). Theoretically, the velocity field should remain zero throughout the simulation. Numerically, the spurious currents
were found in many interfacial methods. In the present simulation, the surface tension coefficient r is taken to be 0.1, the
background fluid density density q1 ¼ 1, and density inside the drop q2 is varied from 0.001 to 1000. The exact jump in
pressure across the droplet is ðDpÞexact ¼ rj and the exact curvature is given by jexact ¼ 2=R for a 3D case. The exact pressure
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Fig. 2. Spurious current at time 0.1 by four models.
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difference Dp is 0.4 in three dimensions. The velocity and pressure are initially set as zero. Velocity boundary conditions are
non-slip wall condition. The computational grid is fixed, rectangular and uniform. The grid size and time step are held fixed.

The level set function is defined as / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2 þ z2Þ

p
� 0:5, and the interface curvature is calculated by j ¼ r � r/

jr/j

� �
.

The interface in not evolved in the tested cases. In the comparison of the algorithms, the viscous term is ignored.

3.1.1. Comparison between Algorithms I and II
Using the algorithms I and II, the four models named AI–TI, AII–TII, AI–TII and AII–TI are firstly compared. AI and AII rep-

resent algorithms I and II for simulation of variable density incompressible Navier–Stokes equations, respectively. TI and TII
represent technique I and technique II for calculation of the pressure gradient and surface tension at cell center, respectively.
The detailed formulas have been given in Section 2.2 for the algorithms and in Section 2.3 for the techniques. AI–TI means
the variable density Navier–Stokes equation is simulated using algorithm I, and the pressure gradient and the surface tension
at a cell center are calculated using technique I, and so on. Most researchers employed the model AI–TI for the simulations of
the multi-fluid flows. Francois et al. [6] developed the balanced-force model of AII–TII.

Using the reciprocal interpolation of Eq. (28) for the density at a cell face from its neighbor centers, the case of q2 ¼ 10 is
simulated on a 40� 40� 40 uniform collocated mesh with Dt ¼ 10�3. In this simulation, the errors in the pressure jump and
in the velocity are investigated. The velocity vectors of time 0.1 at the plane z = 0 from models AI–TI, AII–TII, AI–TII and AII–TI
are shown in Fig. 2(a)–(d), respectively. The velocities are all magnified 1000 times. Strong spurious currents can be seen in
the vicinity of the free surface for model AI–TI, which is dramatically reduced by using the balanced-force model AII–TII, as it
has been illustrated in [6]. The maximum velocity from model AI–TI is 7:189� 10�3, which is 5.282 times bigger than
1:361� 10�3, the maximum velocity from the model AII–TII.

More comparisons between algorithms I and II for incompressible Navier–Stokes equations with a source term are inter-
esting. Ni et al. [18,19] conducted a comparison for incompressible flows with the Lorentz force. They prefer algorithm I for
the MHD simulations. Francois et al. [6] developed the algorithm II and conducted a comparison for multi-fluid flows. They
concluded algorithm II with the pressure gradient and the surface tension calculated together using the technique II is much
better than algorithm I with the pressure gradient and the surface tension at a cell center using the technique I for incom-
pressible flows with a continuous surface tension. The previous comparison between AI–TI and AII–TII conducted in this sec-
tion also supports the conclusion. Here, one more comparison between the two algorithms is conducted for multi-fluid flows.
For the algorithm I, when the technique II is employed for the discretization of the pressure gradient and the surface tension
at a cell center, Fig. 2(c) clearly shows that the velocity by AI–TII is greatly reduced comparing with that from the model AI–
TI. For the algorithm II, when the technique I is used for the discretization of the pressure and the surface tension at a cell
center, Fig. 2(d) clearly shows the velocity from the model AII–TI is greatly increased comparing with that from the model
AII–TII. This comparison illustrates the importance of the discretization of the pressure gradient and the surface tension at a
cell center. More numerical results show the accuracy of algorithm I can be greatly improved if the technique II is employed
for the discretization of the pressure gradient and the surface tension at a cell center.

With the pressure �0.4 fixed at x = �0.95, Fig. 3 illustrates the pressure distribution along the line of z ¼ 0; y ¼ 0 at time
0.1 for the case of drop density 10. Fig. 3(a) shows the pressure distribution along the whole line, where one can see that the
predicted pressure jumps from the two models match well with the theoretical value of 0.4. Indeed, the relative pressure
error is less than 0.1% from the model AII–TII. The pressure distribution inside the droplet is zoomed in Fig. 3(b). One can
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clearly see the pressure oscillation near the free surface in the model AI–TI. This oscillation is greatly suppressed using the
balanced-force algorithm AII–TII.

However, based on the reciprocal interpolation of the density at a cell face, when the density ratio is as big as 1000, there
is a strong pressure oscillation at the vicinity of the bubble interface no matter which model is employed [15]. We therefore
moved to the simple central interpolation for the density at a cell face by Eq. (27). Based on this simple interpolation, it is
hard to get a convergent result for the models AI–TI and AII–TI at a large density ratio if the density at a cell center is directly
applied for the discretization of the gradients using technique I. In the following calculations, only technique II is employed
for the algorithms I and II. The comparison will be conducted among the models of AI–TII, AII–TII, AIII–TIII and AIV–TIII.
Without further note and confusion, in the following description, this four models will be called as AI, AII, AIII and AIV,
respectively.

3.1.2. Comparisons among four models
With the drop density 1000, the velocity vectors at time 0.1 from the models of AI, AII, AIII and AIV are illustrated in Fig. 4.

The vectors are magnified 2000 times. Technique II is employed to calculate the pressure gradient and the surface tension in
algorithms I and II, the velocity vector in Fig. 4(a) and (b) from the two models are almost same. Fig. 4(c) and (d) represent
the results from the consistent projection methods of algorithms III and IV, respectively. The difference between the two fig-
ures is ignorable. However, one can clearly see that the spurious currents from the consistent projection methods are much
X

Y

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Fig. 4. Spurious current at time 0.1 by four models: 2000 times magnified.
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smaller than those from the original projection methods. And the velocity vectors from the consistent projection methods
form closed loops, which show that the consistent projection method can guarantee the cell center velocity vector solenoidal
comparing with the original projection methods. The L1; L1 and L2 errors of the spurious currents are shown in Fig. 5. From
the three figures, one can see that the spurious currents from the algorithms I and II are much bigger than those from the
algorithms III and IV. However, the difference between AI and AII, and the difference between AIII and AIV are very small and
ignorable.

Fig. 6 illustrates the pressure distribution along the line of z ¼ 0; y ¼ 0, where the pressure at x = �0.95 is fixed as �0.4. In
this figure, A1T2 and A2T2 represents the results from models AI and AII, respectively. A3T3 – 2nd and A4T3 – 2nd represents
the models AIII and AIV, respectively, with the new flux constructed from Eq. (36). A3T3 – 2nd – Den and A4T3 – 2nd – Den
represents the models AIII and AIV, respectively, with the new flux constructed from Eq. (47). A3T3 – 1st and A4T3 – 1st
represents algorithms similar as the AIII and AIV, in which the new flux construction is not necessary and the velocity vectors
are calculated through a simple center interpolation of velocity fluxes on surrounding cell faces from Eq. (33) with a second-
order numerical dissipation as illustrated in Eqs. (35) and (40), respectively. Due to the numerical dissipation, A3T3 – 1st and
A4T3 – 1st cannot accurately predict the pressure distribution. The pressures inside the bubble are far from the theoretical
value of 0. All other models can reasonably predict the pressure distribution as shown in Fig. 6a. However, at the vicinity of
the interface inside the bubble as shown in Fig. 6b, the pressures predicted by A1T2 and A2T2 oscillate. This oscillation is
effectively restrained by the algorithms III and IV with new fluxes constructed. With the new flux constructed from Eq.
(36), the resolution of A3T3 – 2nd and A4T3 – 2nd near the interface is not so good, the pressure is smeared a little too much
at the vicinity of the interface with the distribution from A4T3 – 2nd a little better than from A3T3 – 2nd. With the new flux
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constructed from Eq. (40), the oscillations happened in AI and AII are almost completely restrained by the models A3T3 – 2nd
– Den and A4T3 – 2nd – Den, although the value is a little bigger than the theoretical value.

With the drop density of 0.001, the pressure distributions are illustrated in Fig. 7 with pressure 0 fixed at the position of
x = 0. A simple center interpolation of the velocity fluxes using Eq. (33) of A3T3 – 1st and A4T4 –1st cannot predict the pres-
sure distribution accurately. All other models reasonably predict the pressure distribution. At the vicinity of the interface
outside of the drop, construction of the new flux using Eq. (36) smears the pressure too much for the algorithm A3T3 –
2nd and A4T3 – 2nd, while the construction using Eq. (40) predicts the pressure with good resolution.

Using AI, AII, AIII and AIV, the histories of L1 error of spurious currents for different density ratios are shown in Fig. 8. For
large density ratio, there is no difference between AI and AII as illustrated in Fig. 8(a) for the drop density of 0.001 and in
Fig. 5(b) for the drop density of 1000. However with small density ratio, the performance of AII is a little better than of
AI as shown in Fig. 8(b) for the density of 10, in Fig. 8(c) for the drop density of 1 and in Fig. 8(d) for the density of 0.1. There
is no big difference between AIII and AIV. The figure clearly illustrates that the performance of AIII and AIV is much better
than the performance of AI and AII in reducing the spurious currents and in removing the pressure oscillation.

3.2. Three-dimensional droplet oscillation

Oscillating drops represents a standard and demanding test case for surface tension models. An initially non-spherical
viscous drop with subsequent oscillating will decay to equilibrium static shape by the damping effect of viscosity. In the
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Fig. 7. Pressure distribution along a center line.
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present study, an initial 3D ellipsoidal drop specified by equation x2=9þ y2=4þ z2 ¼ 1 is placed at the center of a
10� 10� 10 computational domain in the absence of gravity. The densities (viscosities) inside and outside the elliptical
sphere are 1.0 (0.01) and 0.01 (0.005), respectively. The surface tension coefficient r ¼ 1. A level set method is employed
to capture the interface.

The kinetic energy, 1
2

R
qu � udV , versus time plots are shown in Fig. 9. Eight models are tested and compared in this test

cases. In Fig. 9(a) and (b), all of the models can reach a static state. With a simple central interpolation of velocity fluxes using
Eq. (33), the kinetic energy from A3T3 – 1st and A4T3 – 1st can reach a static state quickly. The models cannot capture the
oscillation frequency. This is due to numerical dissipation terms added as shown in Eqs. (35) and (40), respectively. The ki-
netic energies from all other models gradually reach a static state. These models can reasonably predict the oscillation fre-
quency with a little difference between A1T2 and A3T3, and between A2T2 and A4T3. The amplitudes from the consistent
projection methods of A3T3 and A4T3 are bigger than the corresponding original projection methods of A1T2 and A2T2,
respectively. The amplitudes from A2T2 and A4T3 are larger than those from A1T2 and A3T3, respectively. For consistent
projection methods, such as A3T3 shown in Fig. 9(a) and A4T3 shown in Fig. 9(b), the amplitudes from A3T3 – 2nd – Den
(A4T3 – 2nd – Den) with the new fluxes constructed from the density interpolation of Eq. (47) is less than the amplitudes
from A3T3 – 2nd (A4T3 – 2nd) with the new fluxes constructed from the interpolation of Eq. (36). However, these models can
predict the maximum amplitudes around the value of 6.

The spurious currents in static sphere drop predicted by the consistent projection methods of AIII and AIV are smaller
than those from the o